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Abstract

Explicit expressions for three-dimensional extended Green's displacements in general anisotropic piezoelectric
solids are derived. A very e�cient procedure for the numerical evaluation of the derivatives of the extended Green's

displacements is also proposed. Numerical comparisons are carried out for a transversely isotropic piezoelectric solid
for which exact closed-form solutions are available. It is found that the extended Green's displacements and their
derivatives obtained with the present explicit formulation are in perfect agreement with the exact closed-form

solutions. These Green's functions can be used in the boundary integral equations for piezoelectric solids of general
anisotropy and for subsequent numerical solutions of these equations by means of the boundary element
method. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Green's functions in three-dimensional (3D) anisotropic media are important to the solution of
inclusion problems and of the boundary integral equations. Elastostatic Green's functions in 3D
anisotropic media have been studied, for example, by Freedholm (1900), Lifshitz and Rozenzweig
(1947), Synge (1957), Willis (1965), Mura and Kinoshita (1971), Pan and Chou (1976). Detailed
discussions on the elastic Green's functions in anisotropic solids and their various applications can be
found in the review by Bacon et al. (1978) and in the texts of Mura (1987) and Ting (1996). In general,
four di�erent methods were previously proposed to calculate the elastostatic Green's functions in 3D
anisotropic solids. These are the numerical integral method (Barnett, 1972; Vogel and Rizzo, 1973;
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Wilson and Cruse, 1978), series expansion technique (Mura and Kinoshita, 1971; Chang and Chang,
1995; Gray et al., 1996), dual reciprocity technique (Schclar and Partridge, 1993; Perez and Wrobel,
1996), and the eigenvalue/eigenfunction method (Malen, 1971; Deb et al., 1991). While the ®rst three
methods are approximate, the last one requires solving a 6 � 6 eigenvalue problem. Recently, Wang
(1997) has obtained explicit expressions for the 3D elastostatic Green's functions in anisotropic materials
by use of the Radon transform and contour integration.

Extensive studies have also been carried out on the static Green's functions in anisotropic
piezoelectric solids. For both in®nite and semi-in®nite spaces of transversely isotropic piezoelectric
solids, the exact closed-form Green's functions were obtained by Wang and Zheng (1995), Ding et al.
(1996), and Dunn and Wienecke (1996, 1998) in terms of potential functions. The exact closed-form
Green's functions in two-phase transversely isotropic piezoelectric solids have also been derived recently
by Ding et al. (1997). For materials possessing lower elastic and/or electric symmetry, however, the 3D
Green's functions were previously evaluated numerically (Deeg, 1980; Chen, 1993; Chen and Lin, 1993),
which leads to very cumbersome computation (Chen and Lin, 1995).

In this study, we derive explicit solutions for the extended Green's displacements (three elastic
displacements and one electric potential) in a 3D anisotropic piezoelectric solid. In developing the
present formulation, we ®rst apply the Radon transform to obtain integral expressions for these Green's
displacements. The contour integration involved is then carried out by the residue calculus (Wang,
1997). The derivatives of the extended Green's displacements are evaluated numerically according to a
very e�cient and robust procedure. Numerical examples are presented for a transversely isotropic
piezoelectric solid. It is found that the extended Green's displacements and their derivatives obtained
with the present explicit formulation are in perfect agreement with the exact closed-form solutions
(Dunn and Wienecke, 1996).

2. Basic equations of linear piezoelectricity

Under the condition of static deformation, a linear and generally anisotropic piezoelectric solid obeys
the following governing equations (Tiersten, 1969; Suo et al., 1992; Dunn and Taya, 1993):

2.1. Equilibrium equations

sji, j � Fi � 0

Di, i ÿQ � 0 �1�
where sij and Di are the stress and electric displacement, respectively; Fi and Q are the body force and
electric charge, respectively. In this and the following sections, summation from 1 to 3 (1±4) over
repeated lowercase (uppercase) subscripts is assumed. A subscript comma denotes the partial
di�erentiation.

2.2. Constitutive relations

sij � Cijlmglm ÿ ekijEk

Di � eijkgjk � eijEj �2�
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where gij is the strain and Ei is the electric ®eld; Cijlm, eijk and eij are the elastic moduli (measured at a
constant electric ®eld), the piezoelectric coe�cients (measured at a constant strain or electric ®eld) and
the dielectric constants (measured at a constant strain), respectively. The piezoelectric material constants
satisfy the following symmetry relations:

Cijlm � Cjilm � Cijml � Clmij

eijk � eikj

eij � eji: �3�
It is noteworthy that the elastic and electric ®elds are generally coupled together. However, uncoupled
solutions can be obtained by simply setting eijk=0.

2.3. Elastic strain-displacement and electric ®eld-potential relations

gij �
1

2
�ui, j � uj, i �

Ei � ÿf, i �4�

where ui and f are the elastic displacement and electric potential, respectively.
The basic equations presented above can be uni®ed with the notation introduced by Barnett and

Lothe (1975). With their notation, the elastic displacement and electric potential, the elastic strain and
electric ®eld, the stress and electric displacement, and the elastic and electric moduli can be grouped
together as:

uI

�
ui I � 1, 2, 3
f I � 4

�5�

gIj �
�
gij I � 1, 2, 3
ÿEj I � 4

�6�

siJ �
�
sij J � 1, 2, 3
Di J � 4

�7�

CiJKl �

8>><>>:
Cijkl J, K � 1, 2, 3
elij J � 1, 2, 3;K � 4
eikl J � 4;K � 1, 2, 3
ÿeil J, K � 4

: �8�

In this and the following sections, the elastic displacement and electric potential, de®ned by Eq. (5), will
be called extended displacements, and the elastic stress and electric displacement, de®ned by Eq. (7), will
be called extended stresses (Pan, 1999). It is noted that in de®nitions (5)±(8), the lowercase and
uppercase subscripts take on the range 1±3 and 1±4, respectively. Also in these de®nitions, we have kept
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the original symbols instead of introducing new ones since they can be easily distinguished by the range
of their subscripts. In terms of this shorthand notation, the constitutive relations can be uni®ed into the
single and concise equation:

siJ � CiJKlgKl: �9�
Similarly, the equilibrium equations in terms of the extended stresses can be expressed as

siJ, i � FJ � 0 �10�
with the extended body force FJ being de®ned as

FJ �
�
Fj J � 1, 2, 3
ÿQ J � 4

: �11�

3. Integral expressions for Green's displacements

Let d(x)=d(x1, x2, x3) be the Dirac delta function centered at the origin of a space-®xed Cartesian
coordinates (O; x1, x2, x3) (Fig. 1(a)) and dJP the fourth-rank Kronecker delta. The extended Green's
displacements (a 4 � 4 tensor GKP(x)) are the fundamental solutions of Eq. (10) caused by an extended
point force. Mathematically, this Green's tensor is de®ned by the partial di�erential equations:

CiJKlGKP, li�x� � ÿdJPd�x�: �12�
The ®rst index of the Green's tensor denotes the component of the extended displacement, while the
second denotes the direction of the extended point force. Since this Green's tensor is generally full for
an anisotropic piezoelectric solid, the elastic and electric ®elds are thus coupled together. That is, a body
force will induce an electric potential and an electric charge will generate an elastic displacement. The
physical meaning of the extended Green's displacements GKP(x) is: (1) the elastic displacement (K= 1±
3) at the ®eld point x due to a unit force (P = 1±3) at the origin; (2) the elastic displacement (K= 1±3)
at the ®eld point x due to a unit charge (P = 4) at the origin; (3) the electric potential (K= 4) at the
®eld point x due to a unit force (P = 1±3) at the origin; and ®nally, (4) the electric potential (K= 4) at
the ®eld point x due to a unit charge (P= 4) at the origin.

To derive the Green's tensor, we need to use the following plane representation of the Dirac delta
function (Eq. (A15) of Appendix A)

d�x� � ÿ 1

8p2
D
�
O

d�n � x�
j n j2 dO�n� �13�

where n is a vector variable with components (n1, n2, n3) in the space-®xed coordinates (O; x1, x2, x3)
(Fig. 1(a)), O(n) is any closed surface enclosing the origin (Fig. 1(b)); The integral is taken over all
planes de®ned by n � x=0; The dot ` � ' denotes the dot product, and D is the 3D Laplacian operator,
i.e.

D � @2

@x2
1

� @2

@x2
2

� @2

@x2
3

: �14�

We now introduce a 4 � 4 matrix

GJK�n� � CiJKqninq �15�
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and denote its inverse by Gÿ1JK (n). Integrating Gÿ1JK (n)d(n � x) with respect to n, taking its second
derivatives with respect to xi, and multiplying the result by the extended sti�ness matrix CiJKq, we then
obtain the following important identity (see Eq. (A19) of Appendix A):

CiJKq
@2

@xi@xq

�
O
Gÿ1JK�n�d�n � x� dO�n� � dJPD

�
O

d�n � x�
j n j2 dO�n�: �16�

Making use of the plane representation (13), Eq. (16) can be rewritten as

CiJKq
@2

@xi@xq

�
O
Gÿ1JK�n�d�n � x� dO�n� � ÿ8p2dJPd�x�: �17�

Comparing Eq. (17) to (12), we ®nally arrive at the following integral expression for the extended
Green's displacement tensor

Fig. 1. Relation of the new reference system (O; e, p, q) and the space-®xed Cartesian system (O; x1, x2, x3) in (a), and the geome-

try of (O; x, z, Z ) in the n-space in (b).
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GJK�x� � 1

8p2

�
O
Gÿ1JK�n�d�n � x� dO�n� �18�

or,

GJK�x� � 1

8p2

�
O

AJK�n�
D�n� d�n � x� dO�n� �19�

where AJK(n) is the adjoint matrix of GJK (n), while D(n) is the determinant of GJK (n). These integral
expressions for the extended Green's displacement components, similar to those obtained by Deeg
(1980) and Chen (1993), are analogous to the anisotropic elastic results (Synge, 1957; Wang, 1997).

4. Explicit expressions for Green's displacements

The integral expression (19) for the Green's tensor can actually be transformed to a 1D in®nite
integral and the result can then be reduced to a summation of four residues. This is achieved by
expressing the vector variable n in terms of a new, orthogonal, and normalized system (O; e, p, q),
instead of the space-®xed Cartesian coordinates (O; x1, x2, x3) (Fig. 1(a) and (b)). In selecting of the
new base (e, p, q), we ®rst choose e as (Wang, 1997)

e � x

r
; r �j x j : �20�

Now, let v be an arbitrary unit vector di�erent from e (v$e), the two unit vectors orthogonal to e can
then be selected as:

p � e� v

j e� v j ; q � e� p: �21�

It should be emphasized that e � v should be normalized so that p is a unit vector.
In the new reference system (O; e, p, q), we let the vector variable n be expressed as

n � xp� zq� Ze: �22�
It is clear then that

n � x � p � xx� q � xz� e � xZ � rZ: �23�
Therefore, in terms of the reference system (O; e, p, q), Eq. (19) becomes

GJK�x� � 1

8p2

�
O

AJK�xp� zq� Ze�
D�xp� zq� Ze� d�rZ� dO�x, z, Z� �24�

where O is again any closed surface enclosing the origin (x, z, Z )=(0, 0, 0) (Fig. 1(b)).
The surface integral can be reduced to a 1D in®nite integral by following Wang's approach (Wang,

1997). Shown in Fig. 2 is the integral contour composed of a rectangular parallelepiped. This
rectangular parallelepiped is bounded by surfaces S1 and S2 (x=21), S3 and S4 (z=2L ), and S5 and
S6 (Z=2L ). In terms of these surfaces, the integral (24) can be written as:

GJK�x� � 1

8p2
X6
i�1

�
Si

AJK�xp� zq� Ze�
D�xp� zq� Ze� d�rZ� dO�x, z, Z�: �25�
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Since over surfaces other than S1 and S2 the integrand in (25) approaches zero as 1/L 2, their
contribution to the integration is zero and Eq. (25) thus becomes

GJK�x� � 1

8p2
X2
i�1

�
Si

AJK�xp� zq� Ze�
D�xp� zq� Ze� d�rZ� dO�x, z, Z�: �26�

We notice that in the integrand of Eq. (26), only even powers of x are involved. It is therefore
symmetric with respect to x. This leads to

GJK�x� � 1

4p2

�
Sl

AJK�xp� zq� Ze�
D�xp� zq� Ze� d�rZ� dO�x, z, Z�

� 1

4p2

��1
ÿ1

��1
ÿ1

AJK�p� zq� Ze�
D�p� zq� Ze� d�rZ� dz dZ: �27�

Carrying out the integration of (27) with respect to Z yields

GJK�x� � 1

4p2r

�1
ÿ1

AJK�p� zq�
D�p� zq� dz: �28�

Since the inverse of GJK exists (Dunn, 1994), its determinant D does not have real roots. Therefore, the
eighth-order polynomial equation of z

D�p� zq� � 0 �29�
has eight roots, four of them being the conjugate of the remainder. With these roots, we can write the
polynomial as

D�p� zq� �
X8
k�0

ak�1zk � a9
Y4
m�1
�zÿ zm��zÿ z�m� �30�

where a9 is the coe�cient of z 8;

Fig. 2. A rectangular parallelepiped over which the contour integration is carried out. Surfaces S1 and S2 are bounded by x=21,

S3 and S4 by z=2L, and S5 and S6 by Z=2L.
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Imzm > 0; m � 1, 2, 3, 4 �31�
and z �

m
is the conjugate of zm. Eq. (29) is analogous to the sextic equation of anisotropic elasticity

(Head, 1979) and its roots need to be found numerically. These roots can actually be found very
e�ciently since we are dealing with an eighth-order polynomial with real coe�cients (Press et al., 1989).

In terms of the residues at the poles, the extended Green's displacement (28) can be ®nally expressed
explicitly as

GJK�x� � ÿ Im

2pr

X4
m�1

AJK�p� zmq�

a9�zm ÿ z�m�
Y4

k�1, k6�m
�zm ÿ zk��zm ÿ z�k�

: �32�

There are a couple of features associated with this new expression: First of all, Eq. (32) is an explicit
expression. It is therefore very accurate and e�cient. For a given pair of ®eld and source points, we
need only to solve the 8th-order polynomial Eq. (29) numerically once in order to obtain all the
components of the extended Green's displacement and stress (calculation of the extended stress is
discussed below). Secondly, in obtaining Eq. (32), we have assumed that all the poles are simple. Should
the poles be multiple, a slight change in the material constants will result in single poles, with negligible
errors in the computed Green's tensor, as for the purely elastic case (Pan and Amadei, 1996a; Pan,
1997). Thirdly, since GJK is symmetric, so is its adjoint AJK. Therefore, the extended Green's
displacement GJK is symmetric (Chen, 1993) and one needs to calculate only 10 out of its 16 elements.
The symmetric property of the extended Green's tensor can also be considered as a consequence of the
Betti-type reciprocity (Pan, 1999). Finally, although one can choose the vector v ($e) arbitrarily, it
should be one of the base vectors in the space-®xed Cartesian coordinates, i.e. (1, 0, 0), or (0, 1, 0), or
(0, 0, 1). The analytical expression for the extended Green's displacement is much simpler using such a
vector v than using any other vectors.

5. Derivatives of Green's displacements

We have just derived an explicit expression for the extended Green's displacement. In the application
of the boundary integral equation, one also needs the extended Green's stress, which can be obtained by
taking the derivative of the extended Green's displacement. However, an explicit expression for the
derivative of the Green's displacement is too complicated to be implemented e�ciently. Although the
integral of the derivative of the Green's displacement can be implemented into a boundary element
program with some restrictions on the boundary discretization (Wang, 1997), it is desirable to have a
direct expression for the derivative of the Green's displacement. Here we propose a numerical evaluation
of these derivatives based on the simple Lagrange polynomials. The results turn out to be very e�cient
and yet very accurate.

Let a function f(x ) be known at the n points x1 < x2< . . . <xn, i.e. yi=f(xi ) i = 1, . . . , n, and set

F�x� �
Yn
k�1
�xÿ xk� Fk�x� �

Yn
r�1, r 6�k

�xÿ xr� Fk�xk� �
Yn

r�1, r6�k
�xk ÿ xr� �33�

the Lagrange polynomial of order n ÿ 1

P�x� �
Xn
k�1

Fk�x�
Fk�xk�yk �34�
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will then interpolate the data, with the complete Lagrange interpolation function being

f �x� � P�x� � F�x�f
�n��x�x��
n!

: �35�

If we take the derivative of Eq. (35) and evaluate the result at xr, we obtain

f 0�xr� � P 0�xr� � F 0�xr�f
�n��x�xr��

n!
: �36�

Thus, the error in the ®rst derivative is

F 0�xr� f
�n��x�xr��

n!
�37�

where F '(xr ) is nothing but the product of the distances between xr and the other chosen abscissas. If
the interval between the chosen abscissas is constant, its minimum value is then attained at the middle
point of the segment between x1 and xn. Therefore, the best approximation to f '(xr ) obtainable using
the polynomial derivative is at the middle point of the segment between x1 and xn.

It can be shown that the derivative of the Lagrange polynomial is

P 0�xr� �
Xn

k�1, k6�r

1

xr ÿ xk

�
yr � yk

F 0�xr�
F 0�xk�

�
: �38�

If we choose a polynomial of order 2, i.e. with 3 abscissas, we then get

f 0�x2� � 1

2h
� f�x3� ÿ f �x1�� ÿ h2

6
f �3��x2� �39�

where h=x3ÿx2=x2ÿx1 is the distance between two consecutive abscissas and x2 is a point between x1
and x3.

Let x=(x1, x2, x3) be a ®eld point at which we want to calculate the derivative of the Green's tensor
GPK with respect to the coordinates. According to (39), we now have

@GPK

@x1
1 1

2h
�GPK�x1 � h, x2, x3� ÿ GPK�x1 ÿ h, x2, x3�� �40�

@GPK

@x2
1 1

2h
�GPK�x1, x2 � h, x3� ÿ GPK�x1, x2 ÿ h, x3�� �41�

@GPK

@x3
1 1

2h
�GPK�x1, x2, x3 � h� ÿ GPK�x1, x2x3 ÿ h��: �42�

The choice of the interval h is a crucial decision. An extensive numerical investigation has led us to the
conclusion that the best value of the interval is

h � r10ÿ6 �43�

where r is the distance between the ®eld and source points.
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6. Numerical examples

We have been able to implement our formulation into Mathematica. Before doing that, we need to
have the elastic tensor Cijkl be expressed in terms of the Voigt constant cab, with the latter being de®ned
by 0BBBBBB@

s11
s22
s33
s23
s13
s12

1CCCCCCA �
0BBBBBB@
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

1CCCCCCA

0BBBBBB@
g11
g22
g33
2g23
2g31
2g21

1CCCCCCA �44�

while the relation between Cijkl and cab can be found in Ting (1996).
The piezoelectric constants ekij can also be related to a two-index notation ekp (k= 1, 2, 3; p = 1, . . . ,

6) in the following way:

ek1 � ek11; ek2 � ek22; ek3 � ek33

ek4 � ek23 � ek32

ek5 � ek12 � ek31

ek6 � ek12 � ek21: �45�
As a benchmark example, we consider a transversely isotropic piezoelectric material for which an exact
closed-form solution is available (Dunn and Wienecke, 1996). Assuming that the axis of the material
symmetry is parallel to the x3-axis, then the non-zero elements of the material constants are:

c11, c22�� c11�, c33, c13, c23�� c13�, c44, c55�� c44�, c66, c12�� c11 ÿ 2c66�

e31, e33, e15, e32�� e31�, e24�� e15�

e11, e22�� e11�, e33 �46�
For a poled lead zirconate titanate (PZT-4) ceramic (Dunn and Taya, 1993), the relevant material
constants are given in Table 1, in which the elastic constants cab are in 109 N/m2, the piezoelectric
coe�cient ekp in C/m2, and the dielectric constants eij in 10ÿ9 C/(Vm).

For the source at the origin (0, 0, 0) and the ®eld point at (x1, x2, x3)=(1, 1, 1), the extended Green's
displacements and their derivatives are given in Tables 2±5 and are compared to the exact transversely
isotropic solution (TI formulation) of Dunn and Wienecke (1996). It is observed that the extended
Green's displacements and their derivatives obtained with the present explicit formulation are
surprisingly close to the exact closed-form solutions.

7. Conclusions

An explicit expression for the extended Green's displacement in a three-dimensional and general
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anisotropic piezoelectric solid has been derived. The expression is very easy to implement, robust and
e�cient, thus allowing the cumbersome numerical evaluation of the extended Green's displacement to be
overcome. For the calculation of the derivatives of the extended Green's displacement, we proposed a
simple interpolation based on the Lagrange polynomial. As far as the transversely isotropic piezoelectric
solid is considered, numerical results of the extended Green's displacements and their derivatives from
the present formulation are in perfect agreement with the exact closed-form solutions.

The present formulation is now in the process of being implemented into the authors' 3D boundary
element code for purely elastic media (Pan and Amadei, 1996b), which will be accordingly extended to
the piezoelectric solid. The corresponding 3D boundary element modeling will be reported in a future
paper.
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Table 1

Electroelastic moduli of the PZT-4 material

c11 c13 c12(=c11ÿ2c66) c33 c44 c66
139 74.3 77.8 115 25.6 30.6

e31 e33 e15 e11 e33
ÿ5.2 15.1 12.7 6.461 5.620

Table 2

Extended Green's displacement GPK

(P, K ) TI formulation Present formulation Relative error

1,1 1.1507372825 � 10ÿ12 1.1507372826 � 10ÿ12 1 � 10ÿ10

1,2 1.9428530900 � 10ÿ13 1.9428530903 � 10ÿ13 1 � 10ÿ10

1,3 1.7241444282 � 10ÿ13 1.7241444284 � 10ÿ13 1 � 10ÿ10

1,4 2.0825816731 � 10ÿ4 2.0825816734 � 10ÿ4 1 � 10ÿ10

2,1 1.9428530900 � 10ÿ13 1.9428530903 � 10ÿ13 1 � 10ÿ10

2,2 1.1507372825 � 10ÿ12 1.1507372826 � 10ÿ12 1 � 10ÿ10

2,3 1.7241444282 � 10ÿ13 1.7241444284 � 10ÿ13 1 � 10ÿ10

2,4 2.0825816731 � 10ÿ4 2.0825816734 � 10ÿ4 1 � 10ÿ10

3,1 1.7241444282 � 10ÿ13 1.7241444284 � 10ÿ13 1 � 10ÿ10

3,2 1.7241444282 � 10ÿ13 1.7241444284 � 10ÿ13 1 � 10ÿ10

3,3 7.9729216465 � 10ÿ13 7.9729216476 � 10ÿ13 1 � 10ÿ10

3,4 1.5239325664 � 10ÿ3 1.5239325666 � 10ÿ3 1 � 10ÿ10

4,1 2.0825816731 � 10ÿ4 2.0825816734 � 10ÿ4 1 � 10ÿ10

4,2 2.0825816731 � 10ÿ4 2.0825816734 � 10ÿ4 1 � 10ÿ10

4,3 1.5239325664 � 10ÿ3 1.5239325666 � 10ÿ3 1 � 10ÿ10

4,4 ÿ4.3915928465 � 106 ÿ4.3915928471 � 106 1 � 10ÿ10
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Appendix A

Let f(x) be a function de®ned in R 3 and s a real number, the Radon transform of f(x) is de®ned as
(Courant and Hilbert, 1962; Gel'fand et al., 1966):

f̂�s, n� � R� f�x�� �
�
f �x�d�sÿ n � x� dx �A1�

Table 3

Derivatives of the extended Green's displacement GPK,1

(P, K ) TI formulation Present formulation Relative error

1,1 ÿ9.26183802345 � 10ÿ14 ÿ9.26183801830 � 10ÿ14 6 � 10ÿ10

1,2 1.65932816546 � 10ÿ14 1.65932813164 � 10ÿ14 2 � 10ÿ8

1,3 1.82113322728 � 10ÿ14 1.82113326041 � 10ÿ14 2 � 10ÿ8

1,4 6.70402857710 � 10ÿ6 6.70402926493 � 10ÿ6 1 � 10ÿ7

2,1 1.65932816546 � 10ÿ14 1.65932813164 � 10ÿ14 2 � 10ÿ8

2,2 ÿ4.81188998237 � 10ÿ13 ÿ4.81188998226 � 10ÿ13 2 � 10ÿ11

2,3 ÿ1.54203110547 � 10ÿ13 ÿ1.54203110453 � 10ÿ13 6 � 10ÿ10

2,4 ÿ2.01554138734 � 10ÿ4 ÿ2.01554137037 � 10ÿ4 8 � 10ÿ09

3,1 1.82113322728 � 10ÿ14 1.82113326041 � 10ÿ14 2 � 10ÿ8

3,2 ÿ1.54203110547 � 10ÿ13 ÿ1.54203110453 � 10ÿ13 6 � 10ÿ10

3,3 ÿ3.30447677887 � 10ÿ13 ÿ3.30447677467 � 10ÿ13 1 � 10ÿ9

3,4 ÿ6.20021679052 � 10ÿ4 ÿ6.20021678946 � 10ÿ4 2 � 10ÿ10

4,1 6.70402857711 � 10ÿ6 6.70402926493 � 10ÿ6 1 � 10ÿ7

4,2 ÿ2.01554138734 � 10ÿ4 ÿ2.01554137037 � 10ÿ4 8 � 10ÿ9

4,3 ÿ6.20021679052 � 10ÿ4 ÿ6.20021678946 � 10ÿ4 2 � 10ÿ10

4,4 1.18596300519 � 106 1.18596296905 � 106 3 � 10ÿ8

Table 4

Derivatives of the extended Green's displacement GPK,2

(P, K ) TI formulation Present formulation Relative error

1,1 ÿ4.81188998237 � 10ÿ13 ÿ4.81188998314 � 10ÿ13 2 � 10ÿ10

1,2 1.65932816546 � 10ÿ14 1.65932816356 � 10ÿ14 1 � 10ÿ9

1,3 ÿ1.54203110547 � 10ÿ13 ÿ1.54203110329 � 10ÿ13 1 � 10ÿ9

1,4 ÿ2.01554138734 � 10ÿ4 ÿ2.01554137136 � 10ÿ4 8 � 10ÿ9

2,1 1.65932816546 � 10ÿ14 1.65932816356 � 10ÿ14 1 � 10ÿ9

2,2 ÿ9.26183802345 � 10ÿ14 ÿ9.26183800722 � 10ÿ14 2 � 10ÿ9

2,3 1.82113322728 � 10ÿ14 1.82113324292 � 10ÿ14 9 � 10ÿ9

2,4 6.70402857710 � 10ÿ6 6.70402899107 � 10ÿ6 6 � 10ÿ8

3,1 ÿ1.54203110547 � 10ÿ13 ÿ1.54203110329 � 10ÿ13 1 � 10ÿ9

3,2 1.82113322728 � 10ÿ14 1.82113324292 � 10ÿ14 9 � 10ÿ9

3,3 ÿ3.30447677887 � 10ÿ13 ÿ3.30447678318 � 10ÿ13 1 � 10ÿ9

3,4 ÿ6.20021679052 � 10ÿ4 ÿ6.20021678915 � 10ÿ4 2 � 10ÿ10

4,1 ÿ2.01554138734 � 10ÿ4 ÿ2.01554137136 � 10ÿ4 8 � 10ÿ9

4,2 6.70402857711 � 10ÿ6 6.70402899107 � 10ÿ6 6 � 10ÿ8

4,3 ÿ6.20021679052 � 10ÿ4 ÿ6.20021678915 � 10ÿ4 2 � 10ÿ10

4,4 1.18596300519 � 106 1.18596303172 � 106 2 � 10ÿ8
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where d( ) is the one-dimensional Dirac delta. It follows that, when s varies over the real line, the
Radon transform is an integration of f(x) over all planes de®ned by n � x=s.

From de®nition (A1), we can get the following properties of fÃ:

1. Homogeneity:

f̂�as, an� � f̂�s, n�
j a j : �A2�

2. Linearity:

R�c1f1 � c2f2� � c1f̂1 � c2f̂2: �A3�
3. Transform of a linear transformation:

R� f�Aÿ1x�� �j det A j f̂�s, ATn� �A4�
where det A$0.

4. Transform of derivatives:

R

�
@ f

@xi

�
� ni

@ f̂�s, n�
@s

; R

"
@2f

@xi@xj

#
� ninj

@2f̂�s, n�
@s2

: �A5a,b�

The inverse Radon transform is an integration in the n-space over the surface O containing the origin,
de®ned as:

f �x� � R��f̂ 00� � ÿ 1

8p2

�
O
f̂
00�n � x, n� dO�n� �A6�

where

Table 5

Derivatives of the extended Green's displacement GPK,3

(P, K ) TI formulation Present formulation Relative error

1,1 ÿ5.76929903985 � 10ÿ13 ÿ5.76929904374 � 10ÿ13 7 � 10ÿ10

1,2 ÿ2.27471872311 � 10ÿ13 ÿ2.27471872962 � 10ÿ13 3 � 10ÿ9

1,3 ÿ3.64226645455 � 10ÿ14 ÿ3.64226646215 � 10ÿ14 2 � 10ÿ9

1,4 ÿ1.34080571542 � 10ÿ5 ÿ1.34080565033 � 10ÿ5 5 � 10ÿ8

2,1 ÿ2.27471872311 � 10ÿ13 ÿ2.27471872962 � 10ÿ13 3 � 10ÿ9

2,2 ÿ5.76929903985 � 10ÿ13 ÿ5.76929904047 � 10ÿ13 1 � 10ÿ10

2,3 ÿ3.64226645455 � 10ÿ14 ÿ3.64226648904 � 10ÿ14 9 � 10ÿ9

2,4 ÿ1.34080571542 � 10ÿ5 ÿ1.34080580158 � 10ÿ5 6 � 10ÿ8

3,1 ÿ3.64226645455 � 10ÿ14 ÿ3.64226646215 � 10ÿ14 2 � 10ÿ9

3,2 ÿ3.64226645455 � 10ÿ14 ÿ3.64226648904 � 10ÿ14 9 � 10ÿ9

3,3 ÿ1.36396808876 � 10ÿ13 ÿ1.36396808802 � 10ÿ13 5 � 10ÿ10

3,4 ÿ2.83889208291 � 10ÿ4 ÿ2.83889208747 � 10ÿ4 2 � 10ÿ9

4,1 ÿ1.34080571542 � 10ÿ5 ÿ1.34080565033 � 10ÿ5 5 � 10ÿ8

4,2 ÿ1.34080571542 � 10ÿ5 ÿ1.34080580158 � 10ÿ5 6 � 10ÿ8

4,3 ÿ2.83889208291 � 10ÿ4 ÿ2.83889208747 � 10ÿ4 2 � 10ÿ9

4,4 2.01966683615 � 106 2.01966682620 � 106 5 � 10ÿ9
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f̂ 00�n � x, n� � @2f̂�s, n�
@s2

�����
s�n�x

: �A7�

Let d(x)=d(x1, x2, x3) be the three-dimensional Dirac delta centered at the origin, i.e.�
R3

d�x� f�x� dV � f �o� �A8�

then, the Radon transform of the three-dimensional Dirac delta is

d̂�s, n� � R�d�x�� �
�
d�x�d�sÿ n � x� dx � d�sÿ n � o� � d�s�: �A9�

In Eq. (A8), o=(0, 0, 0). We will use the same symbol d for one-dimensional as well as three-
dimensional Dirac delta, with the convention that if its argument is a scalar, the one-dimensional Dirac
delta is involved; if the argument is a vector, the three-dimensional Dirac delta is involved.

Noticing

@d�n � x�
@xi

� ni
dd
ds

����
s�n�x

;
@2d�n � x�
@x2

i

� n2i
d2d
ds2

����
s�n�x

�A10�

we obtain

X3
i�1

@2d�n � x�
@x2

i

�
X3
i�1

n2i
d2d
ds2

����
s�n�x
� d2d

ds2

����
s�n�x

X3
i�1

n2i �j n j2
d2d
ds2

����
s�n�x

: �A11�

In terms of the 3D Laplacian operator, Eq. (A11) can be rewritten as

Dd�n � x�
j n j2 � d2d

ds2

����
s�n�x

: �A12�

Therefore, Eq. (A7) becomes

d̂
00 d2d

ds2

����
s�n�x
� Dd�n � x�
j n j2 : �A13�

According to (A6), the inverse Radon transform of the Dirac delta is

d�x� � ÿ 1

8p2

�
O

Dd�n � x�
j n j2 dO�n� � ÿ 1

8p2
D
�
O

d�n � x�
j n j2 dO�n�: �A14�

The last equal sign is due to the fact that the variable of integration is n, not x. Thus, we ®nally arrive
at the very notable plane representation of d(x):

d�x� � ÿ 1

8p2
D
�
O

d�n � x�
j n j2 dO�n�: �A15�

Furthermore, from Eq. (A3) and (A5b), we get

R�Df�x�� �
X3
i�1

R

"
@2f �x�
@x2

i

#
�
X3
i�1

n2i
@2 f̂�s, n�
@s2

� @2f̂�s, n�
@s2

X3
i�1

n2i �j n j2
@2 f̂�s, n�
@s2

: �A16�
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Making use of Eq. (A10), we now can derive the following identities, in which integration is taken over
the n-space:

CiJKq
@2

@xi@xq

�
O
Gÿ1JK�n�d�n � x� dO � CiJKq

�
O
Gÿ1pk �n�

@2d�n � x�
@xi@xq

dO

� CiJKq

�
O
Gÿ1pk �n�ninq

d2d�s�
ds2

����
s�n�x

dO �
�
O
CiJKqninqGÿ1pk �n�

d2d�s�
ds2

����
s�n�x

dO

�
�
O
CiJKqninq�CiJKqninq�ÿ1 d2d�s�

ds2

����
s�n�x

dO � dJP

�
O

d2d�s�
ds

����
s�n�x

dO: �A17�

By virtue of (A13), we have

dJP

�
O

d2d�s�
ds2

����
s�n�x

dO � dJP

�
O

Dd�n � x�
j n j2 dO � dJPD

�
O

d�n � x�
j n j2 dO: �A18�

Summing up, we obtain the following important identity:

CiJKq
@2

@xi@xq

�
O
Gÿ1JK�n�d�n � x� dO � dJPD

�
O

d�n � x�
j n j2 dO: �A19�

It is worth mentioning that the Radon transform, as well as the direct delta function method, were also
successfully applied to the derivation of the elastodynamic Green's functions for anisotropic solids
(Wang and Achenbach, 1995; Tewary, 1995).

References

Bacon, D.J., Barnett, D.M., Scattergood, R.O., 1978. The anisotropic continuum theory of lattice defects. Progress in Materials

Sci. 23, 51±262.

Barnett, D.M., 1972. The precise evaluation of derivatives of the anisotropic elastic Green's functions. Physica Status Solidi 49b,

741±748.

Barnett, D.M., Lothe, J., 1975. Dislocation and line charges in anisotropic piezoelectric insulators. Physica Status Solidi 67b, 105±

111.

Chang, C.S., Chang, Y., 1995. Green's function for elastic medium with general anisotropy. Journal of Applied Mechanics 62,

573±578.

Chen, T., 1993. Green's functions and the non-uniform transformation problem in a piezoelectric medium. Mech. Res. Comm. 20,

271±278.

Chen, T., Lin, F.Z., 1993. Numerical evaluation of derivatives of the anisotropic piezoelectric Green's functions. Mech. Res.

Comm. 20, 501±506.

Chen, T., Lin, F.Z., 1995. Boundary integral formulations for three-dimensional anisotropic piezoelectric solids. Computational

Mechanics 15, 485±496.

Courant, R., Hilbert, D., 1962. Methods of Mathematical Physics, vol. II. Interscience, New York.

Deb, A., Henry Jr, D.P., Wilson, R.B., 1991. Alternate BEM formulations for 2- and 3-D anisotropic thermoelasticity.

International Journal of Solids and Structures 27, 1721±1738.

Deeg, W.F. 1980 The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. dissertation, Stanford

University.

Ding, H., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. International Journal of

Solids Structures 33, 2283±2298.

Ding, H., Chen, B., Liang, J., 1997. On the Green's functions for two-phase transversely isotropic piezoelectric media.

International Journal of Solids Structures 34, 3041±3057.

E. Pan, F. Tonon / International Journal of Solids and Structures 37 (2000) 943±958 957



Dunn, M.L., 1994. Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the sol-

ution of inclusion and inhomogeneity problems. Int. J. of Eng. Sci. 32, 119±131.

Dunn, M.L., Taya, M., 1993. An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc.

Lond. A443, 265±287.

Dunn, M.L., Wienecke, H.A., 1996. Green's functions for transversely isotropic piezoelectric solids. International Journal of Solids

Structures 33, 4571±4581.

Dunn, M.L., Wienecke, H.A. 1999 Half-space Green's functions for transversely isotropic piezoelectric solids. J. Appl. Mech. (in

press).

Freedholm, I., 1900. Sur les equations de l'equilibre d'un corps solide elastique. Acta Mathematica 23, 1±42.

Gel'fand, I.M., Graev, M.I., Vilenkin, Y.N., 1966. Generalized Functions, vol. 5. Academic Press, New York.

Gray, L.J., Ghosh, D., Kaplan, T., 1996. Evaluation of the anisotropic Green's functions in three dimensional elasticity.

Computational Mechanics 17, 255±261.

Head, A.K., 1979. The Gaois unsolvability of the sextic equation of anisotropic elasticity. Journal of Elasticity 9, 9±20.

Lifshitz, I.M., Rozenzweig, L.N., 1947. On the construction of the Green's tensor for the basic equation of the theory of elasticity

of an anisotropic in®nite medium. Zh. Eksp. Teor. Fiz. 17, 783±791.

Malen, K., 1971. A uni®ed six-dimensional treatment of elastic Green's functions and dislocations. Physica Status Solidi 44b, 661±

672.

Mura, T., 1987. Micromechanics of Defects in Solids, 2nd ed. Martinus Nijho�.

Mura, T., Kinoshita, N., 1971. Green's functions for anisotropic elasticity. Physica Status Solidi 47b, 607±618.

Pan, E., 1997. A general boundary element analysis of 2-D linear elastic fracture mechanics. Int. J. Fracture 88, 41±59.

Pan, E., 1999. A BEM analysis of fracture mechanics in 2-D anisotropic piezoelectric solids. Eng. Anal. Bound. Elements 23, 67±

76.

Pan, E., Amadei, B., 1996a. Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary

element method. Int. J. Fracture 77, 161±174.

Pan, E., Amadei, B., 1996b. 3-D boundary element formulation of anisotropic elasticity with gravity. Applied Mathematical

Modelling 20, 114±120.

Pan, Y.C., Chou, T.W., 1976. Point force solution for an in®nite transversely isotropic solid. Journal of Applied Mechanics 43,

608±612.

Perez, M.M., Wrobel, L.C., 1996. An integral-equation formulation for anisotropic elastostatics. Journal of Applied Mechanics 63,

891±902.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1989. Numerical Recipes. Cambridge University Press.

Schclar, N.A., Partridge, P.W., 1993. 3D anisotropic elasticity with BEM using the isotropic fundamental solution. Engineering

Analysis with Boundary Elements 11, 137±144.

Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40,

739±765.

Synge, J.L., 1957. The Hypercircle in Mathematical Physics. Cambridge University Press.

Tewary, V.K., 1995. Computationally e�cient representation for elastostatic and elastodynamic Green's functions for anisotropic

solids. Physical Review B51, 15,695±15,702.

Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York.

Ting, T.C.T., 1996. Anisotropic ElasticityÐTheory and Applications. Oxford University Press, New York.

Vogel, S.M., Rizzo, F.J., 1973. An integral equation formulation of three dimensional anisotropic elastostatic boundary value pro-

blems. Journal of Elasticity 3, 203±216.

Wang, C.Y., 1997. Elastostatic ®elds produced by a point source in solids of general anisotropy. J. Eng. Math. 32, 41±52.

Wang, C.Y., Achenbach, J.D., 1995. Three-dimensional time-harmonic elastodynamic Green's functions for anisotropic solids.

Proc. R. Soc. Lond. A449, 441±458.

Wang, Z., Zheng, B., 1995. The general solution of three-dimensional problems in piezoelectric media. International Journal of

Solids Structures 32, 105±115.

Willis, J.R., 1965. The elastic interaction energy of dislocation loops in anisotropic media. Q. J. Mech. Appl. Math. 18, 419±433.

Wilson, R.B., Cruse, T.A., 1978. E�cient implementation of anisotropic three dimensional boundary-integral equation stress analy-

sis. International Journal for Numerical Methods in Engineering 12, 1383±1397.

E. Pan, F. Tonon / International Journal of Solids and Structures 37 (2000) 943±958958


